Math 210C Lecture 28 Notes

Daniel Raban

June 7, 2019

1 Induction-Restriction Tables, Determining Induced Characters, and Applications to Group Theory

1.1 Induction-restriction tables

Definition 1.1. Let ψ_i be the irreducible characters of a group H, and let χ_i be the irreducible characters of G, where $H \leq G$. The **induction-restriction table** is the matrix with (i, j)-entry $\langle \psi_i, \operatorname{Res}_{H}^{G}(\chi_i) \rangle (= \langle \operatorname{Ind}_{H}^{G}(\psi_i), \chi_j \rangle).$

Example 1.1. Let $H = A_4$ and $G = S_4$. We have characters $1, \chi, \chi^2, \psi$ on A_4 and χ_1, χ_2 , dots, χ_5 on S_4 . The induction-restriction table is

	χ_1	χ_2	χ_3	χ_4	χ_5
1	1	1	0	0	0
χ	0	0	1	0	0
χ^2	0	0	1	0	0
ψ	0	0	0	1	1

What does this tell us? It tells us that $\operatorname{Ind}_{H}^{G}(1) = \chi_{1} + \chi_{2}$, $\operatorname{Ind}_{H}^{G}(\chi) = \operatorname{Ind}_{H}^{G}(\chi^{2}) = \chi_{3}$, and $\operatorname{Ind}_{H}^{G}(\psi) = \chi_{4} + \chi_{5}$.

1.2 Determining induced characters

Proposition 1.1. Let $H \leq G$ have finite index, and let g_1, \ldots, g_k be coset representatives for G/H. Let ψ be a character of H, and extend ψ to $\tilde{\psi} : G \to F$ by $\tilde{\psi}(g) = 0$ if $g \in G \setminus H$. Then for $g \in G$,

$$\operatorname{Ind}_{H}^{G}(\psi)(g) = \sum_{i=1}^{k} \tilde{\psi}(g_{i}^{-1}gg_{i}).$$

Proof. Let W be a representation of H with character ψ , and let $B = (w_1, \ldots, w_n)$ be a basis. Then $\operatorname{Ind}_H^G(W) \cong F[G] \otimes_{F[H]} W$ has basis $g_i \otimes w_j$, where $g_i \in G$ and $w_j \in W$. We

have $g \cdot g_i = g_{\sigma(i)}h_i$ for some $\sigma \in S_k$, $h_i \in H$ for all $1 \leq i \leq k$. Then

$$g(g_i \otimes w_j) = g_{\sigma(i)} h_i \otimes w_j = g_{\sigma(i)} \otimes h_i w_j$$

Then $\rho_W(g)$, represented with respect to $\{g_i \otimes w_j\}$ (with lexicographical order), is a $k \times k$ matrix of $m \times m$ blocks ($m = \dim_F(W)$). Nonzero blocks ($i, \sigma(i)$) are the matrix representation of $\rho_W(h_i)$. Then

$$\operatorname{tr} = \sum_{\substack{i=1\\\sigma(i)=i}}^{k} \psi(h_i) = \sum_{\substack{i=1\\\sigma(i)=i}}^{k} \psi(g_i^{-1}h_ig_i) = \sum_{i=1}^{k} \tilde{\psi}(g_i^{-1}h_ig_i).$$

We don't have to only sum over representatives of cosets.

Corollary 1.1. Let G be finite and $H \leq G$ have finite index. Then

$$\operatorname{Ind}_{H}^{G}(g) = \frac{1}{|H|} \sum_{\substack{k \in G \\ kgk^{-1} \in H}} \psi(k^{-1}gk).$$

Corollary 1.2. If $H \leq G$ and $g \notin H$, then $\operatorname{Ind}_{H}^{G}(g) = 0$.

Example 1.2. Let $G = D_{2n}$, where $|D_{2n}| = 4n$. Then $G^{ab} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, so we get 4 abelian characters $\chi_1, \chi_2, \chi_3, \chi_4$ which are trivial, $s \mapsto 1$, $r \mapsto 1$, and $rs \mapsto 1$, respectively. Let $\psi : H = \langle r \rangle \to \mathbb{C}^{\times}$, where $\psi(r) = \zeta_n = e^{2\pi i/n}$. We then get characters of H, $1, \ldots, \psi^{2n-1}$. If we let $\theta_i = \text{Ind}_H^G(\psi^i)$, this vanishes on all reflections (by the previous corollary). The left coset representatives of G/H are 1 and s, so $\theta_i(r^j) = \zeta_n^{ih} + \zeta_n^{-ij}$ from the proposition. The characters χ_i with $1 \leq i \leq n-1$ are distinct, have degree 2, and are irreducible (as not sums of abelian characters). We have 4 abelian characters, so the dimensions give $4 \cdot 1^1 + (n-1) \cdot 2^2 = 4n$. So these are all the characters of G.

Note that $\theta_i|_H = \psi^i + \psi^{-i}$ for $1 \le i \le n-1$, $\theta_0|_H = \chi_1 + \chi_3$, and $\theta_n|_H = \chi_2 + \chi_4$. So we can also write out the induction-restriction table.

Corollary 1.3. Let G be finite, and let $H \cap C_g = \coprod_{i=1}^{\ell} T_i$, where T_i are distinct H-conjugacy classes. Let h_i be a representative of T_i for each i. Then

$$\operatorname{Ind}_{H}^{G}(\psi)(g) = [G:H] \sum_{i=1}^{\ell} \frac{|T_{i}|}{|C_{g}|} \psi(h_{i}).$$

Proof. Note that $|\{k \in G : kgk^{-1} \in T_i\}| = |Z_g| \cdot |T_i| = \frac{n}{|C_g|}|T_i|$. By the first corollary,

$$\mathrm{Ind}_{H}^{G}(\psi)(g) = \frac{1}{|H|} \sum_{i=1}^{\ell} \frac{n}{|C_{g}|} |T_{i}| \psi(h_{i}).$$

Example 1.3. Let $H = S_3 \leq G = S_4$. Let C_1, \ldots, C_5 be the conjugacy classes in S_4 of e, (12), (123), (1234), (12)(34) with $c_i = |C_i|$. Let T_1, T_2, T_3 be the conjugacy classes in S_3 of e, (12), (123). Then $C_4 \cap S_3 = C_5 \cap S_3 = 0$, and $C_i \cap S_3 = T_i$ for all $1 \leq i \leq 3$. If we let $\psi_1 = 1, \psi_2 = \text{sgn}, \psi_3 = \chi_W$ of S_4 , then let $\phi_i = \text{Ind}_H^G(\psi_i)$. We can then calculate these characters of S_4 :

S_4	e	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2)(3\ 4)$
ϕ_1	4	2	1	0	0
ϕ_2	4	-2	1	0	0
ϕ_3	8	0	1	0	0

Then we can calculate

$$\langle \phi_i, \phi_i \rangle = \frac{1}{24} |\phi_1(e)|^2 + \frac{1}{4} |\phi_i((1\ 2))|^2 + \frac{1}{3} |\phi_i((1\ 2\ 3))|^2 = \begin{cases} 2 & i = 1, 2\\ 3 & i = 3. \end{cases}$$

We also have $\langle \phi_1, \chi_1 \rangle = 1$ and $\langle \phi_1, \chi_2 \rangle = 0$, so $\phi_1 - \chi_1$ irreducible of degree 3; this is what we call χ_4 . Similarly, $\phi_2 - \chi_2$ is irreducible of degree 3 and is what we would call χ_5 . We can also calculate

$$\langle \phi_3, \chi_4 \rangle = \langle \chi_3, \chi_5 \rangle = 1,$$

which gives us that $\phi_3 - \chi_4 - \chi_5$ is irreducible of degree 2. This is what we would call χ_3 . So we can find all the irreducible characters in this way.

1.3 Properties of groups in terms of characters

Let G be finite with irreducible characters χ_1, \ldots, χ_r . We can calculate properties of the group from the character table.

Proposition 1.2. $N_i = \{g \in G : \chi_i(g) = \chi_i(1)\} \leq G$, and all normal subgroups of G have the form $\bigcap_{i \in J} N_i$ for $J \subseteq \{1, \ldots, r\}$.

Proposition 1.3. $Z_i = \{g \in G : |\chi_i(g)| = \chi_i(1)\} \leq G$, and $\bigcap_{i=1}^r Z_i = Z(G)$.

Proposition 1.4. Let $1 \leq i, j \leq r$, let $c_j = |C_j|$, let $n_i = \deg(\chi_i)$, and let $g \in G$. Then $\frac{c_j}{n_i}\chi_i(g_j) \in \mathbb{Z}[\mu_n]$.

Corollary 1.4. Let n_i be the degree of an irreducible representation. Then $n_i \mid n$.

You can use this to prove the following important theorem.

Theorem 1.1 (Burnside's theorem). Every group of order p^aq^b with p, q prime is solvable.

Hopefully, you are now an expert in abstract algebra.